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Abstract—Forced convection from circular cylinders in crossflow at moderate Reynolds numbers shows

departures from flow and heat transfer predicted by boundary-layer analysis because of boundary-layer

curvature. In the forward stagnation region the velocity gradient and its rate of change in the vicinity

of the surface increase as Re decreases. At large Prandt] numbers the change in heat transfer is associated

with the imcrease in wall velocity gradient, and is greater than expected through curvature of the

thermal boundary layer itself For Pr below about 01, effects of curvature of the thermal boundary
layer exceed effects of change in wall velocity gradient.

NOMENCLATURE

stream functions;

dimensionless stream functions;
dimensionless temperature profiles;

cylinder radius;

radius at a point in the fluid surrounding
cylinder;

dimensionless radial coordinate;

{—Rei*;

dimensionless temperature;

kinematic viscosity;

azimuthal angle, measured from front stagna-
tion point;

stream function;

ug, Nusselt number based on cylinder radius R;
Prandtl number;

Reynolds number based on cylinder radius R.
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INTRODUCTION

ForceD convection from circular cylinders at moderate
Reynolds numbers exhibits considerable departures
from the flow and heat transfer predicted by boundary-
layer analysis. These departures are caused predomin-
antly by the boundary-layer curvature which is ignored
in the asymptotic (Re -+ c0) analysis, these being cast
in rectangular curvilinear coordinates, ¢.g. Blasius [1]
and Goertler [2]. The departure is most pronounced
for very small Prandtl numbers at any finite Reynolds
number, because the thermal boundary layer becomes
increasingly thicker than the viscous boundary layer
(and is therefore affected by its curvature more) as the
Prandtl number is reduced. For boundary-layer analy-
sis of convection round the forward portion of a
cylinder, the expansion of Merk {3] is convenient to

use, and the convergence scheme of Nachtsheim and
Swigert [4] permits solution for any Prandtl number
of interest through use of a digital computer.

Some estimates of convection at moderate Reynolds
numbers have been made, including Van Dyke’s
second-order calculations using expansion methods
[5]. Some of the interest in second-order effects has
been stimulated by observations in hypersonic experi-
ments, as reviewed by Lewis [6]. However, for the
classical problem in incompressible flow, the proper
formulation of the problem requires solution of the
two-dimensional Navier—Stokes and energy equations
expressed most conveniently in cylindrical coordinates.
These give rise to a momentum equation of higher
order than that which comes from boundary-layer
theory. This complicates computation of solutions
because it requires a larger number of boundary values
at the cylinder surface to be found.

ANALYSIS

The formulation of the problem for which solutions
are given here is rather similar to that used for a study
on the effect of boundary-layer curvature in natural
convection over a horizontal cylinder [ 7], In the present
case there is no buoyancy term but instead a steady
flow transverse to the cylinder and which is uniform
infinitely upstream of the cylinder. In common with
the natural convection problem the first pair of differ-
ential equations derived through application of the
Blasius-style or the Goertler-style transformations (the
original equations here being written in cylindrical
coordinates) turns out to be the same for both trans-
formations; for the front stagnation region the solution
of this first pair of equations is dominant. The choice
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of the azimuthal series is open to other possibilities.
Besides the series of Blasius and of Goertler, each of
these series being designed for use in boundary layer
problems (Re — o), one finds series such as that used
for flow around a cylinder in the Reynolds number
range O(1) by Underwood [8]. Underwood’s series
expansion for the stream function was

Vo= filr)sing + f2(r)sin2¢ + ... (H

an expansion which yielded equations for solution on
a series-truncation basis. A particular advantage which
arose at Re = 0{1) was that the sequence of differential
equations could be arranged in a set for each of the f;
with a group of linear terms in derivatives of f; making
up the left-hand-side, the right-hand-side being a func-
tion of all fs and Re. This sequence was solved
iteratively through series truncation. In the present case
solutions are sought in the range oo > Re > 900, and
series appropriate for boundary-layer-like problems
seem to be a useful starting point: presumably, as Re
is progressively reduced the (truncated) series will need
to be taken to an increasing number of terms to
maintain a constant precision of solution and at some
Reynolds number a switch to an expansion such as (1)
would provide a more efficient means of solution
because the number of terms in the series needed would
be smaller, Thus, by use of the Blasius-style trans-
formations for the radial coordinate

{ = Re¥*r/R, 2)
the stream function (an azimuthal series)
Y = vRe} P Fi(O)+ P Fa() ..} {3)
and the dimensionless temperature
0 = Go(O)+¢*Gs() + ... (4)

the Navier-Stokes and energy equations reduce to sets
of terms which are coefficients of an infinite power
series of the azimuthal coordinate ¢; each set which
is separately a coefficient of a power of ¢ can be put
equal to zero. It is found that the set for each power
of ¢, while dominated by terms for the corresponding
F;, contain some terms for other F; as well. This
implies that the process of solution is not simply a
matter of marching through equations of ascending
order in Fy’s, using only solutions for lower values of
the series index (i), as can be done in the boundary-
layer limit; instead, an iterative process appears to be
needed because even the first equation (obtained by
putting the coefficient of ¢ equal to zero) contains
terms in F3 as well as F;. A continuous process of
revising solutions for Fy, F3, etc. seems to be called for,
in principle, as higher orders of F; are numerically
investigated. The very first solution which can be sought
is one for the first pair of equations (momentum and
energy) from which terms in higher orders of F; have
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been deleted. Terms in the momentum equation. for
example, can be arranged in sub-sets each of different
order in (1/Re)!/?; the first such sub-set of order (1), is

~ Re'? Re'
FY 4= FF' - FiFy
s 5

and this is the sub-set which yields the boundary-layer
limit when integrated once; the sub-set of order
(1/Re)' 1s

2\ .. Re'? . Re'?
S JFU 4 e FUF = R
N s -
this sub-set represents the first-order correction for
finite Re effects and does not contain F; in any form;:
the sub-set of order (1/Re) 1s
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This sub-set is the second-order correction for finite
Re effects and does contain terms involving Fi. By
deleting terms in Fj, it is to this order that solution
of the equation truncated of terms in F; will be
approximate. It is possible to estimate the magnitudes
of terms here because at large Re, F; and F; will still
be fairly close to values determined from the Blasius
series solutions [9]. From this it seems that the terms
in F{F3 and F{F3 will nearly mutually cancel, and that
omission of the term in F3 has the greatest effect in
making the solution of the momentum equation ap-
proximate. The situation with the energy equation is
simpler; no terms in G, etc. appear in the energy
equation for (¢)°, but the F; used in that equation is
of course an approximation in the sense discussed in
detail above. Understanding that the solution of
equations from which terms in F; etc. have been
deleted is the zeroth iterate at finite Re in a series
truncation, the truncated equations for F; and G, can
be written (dropping the subscripts) as

FY 4+ QOF" = () F" + (/O F
~ (Re/C)(F Y= (Re' /() F'F" — (Re" 2 /) FF
+(ReVY/L)FF" + (RFZOFF" =0 (5)

and

G +(1/0)G + (Rek2/OPrFG =0 (6)

with the boundary conditions, after corresponding

transformations, being written
F=0,F=0,G=1 at

F—>1F'-0,G->0 as

F= Rie = Rek”
o (7)
Fs L Le G

These equations reduce to those for a boundary layer
as Reg — o if the transformation # = { — Rek'* is used.
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In the process of solution, the three boundary values
F" F" and G’ at r = R, i.e. { = Re¥?, must bé found.
This can be accomplished by iteration seeking values
for F” and F'" at { = Reg/* which simultaneously make
F'—1 and F”— 0 at sufficiently large value of { in
momentum equation. After the momentum equation
has been solved for a particular Reynolds number, the
energy equation can be solved for a particular Prandtl
number by seeking G' at { = Re¥? to satisfy the
asymptotic condition, G — 0 as { —» co. Integration of
equations (4) and (5) was carried out by fourth-order
Runge-Kutta and Adams-Moulton programs and the
Nachtsheim and Swigert convergence scheme was used.

DISCUSSION

The results of the calculations quantify the expected
trends, Table 1. The effect of finite boundary-layer
curvature on structure in the viscous boundary layer
is to increase the velocity gradient (F”) and its rate of
change (F"") in the vicinity of the wall, compared with
the boundary-layer asymptotic values, as Re is de-
creased. At large Prandtl numbers the thermal bound-
ary layer is small compared with the viscous boundary
layer, and its quantitative structure is dominantly
determined by the velocity gradient at the wall; thus
the effect of finite Reynolds numbers is felt dominantly
through the shift in F”. The effect is greater than would
be accountable through curvature of the thermal
boundary layer by itself. For the asymptotic boundary-
layer case, values are indicated by the dashed line. At
very small Prandtl numbers the thermal, boundary
layer is larger than the viscous boundary layer, and
the effects of curvature of the thermal boundary layer
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FiG. 1. Effect of finite Reynolds numbers on heat transfer

at the forward stagnation point of a cylinder over a range

of Prandtl numbers; the boundary-layer limit solutions are
shown as a dashed line.

itself exceeds the effect of the shift in F”. These two
cases can be seen in Fig. 1 where Nug/Rek*Pr'’® is
plotted as a function of Pr. The numerical effects of
the two Prandtl number extremes can be seen; what
is not obvious before numerical evaluation is the order
of magnitude of Prandtl number which divides the two
extremes. From Fig. 1, this is about Pr = 0-1. The
distinction between the two extremes can be seen in
temperature gradient profiles from Prandtl numbers
typical of the ranges, Fig. 2; at Pr = 0-005 there is a
large change in G’(0) from Re = 10000 to Re = 900,
an effect of thermal boundary-layer curvature itself,

Table 1. Boundary values at r = R

Pr= 0-005 0-025 03 072 70

Reg F” —F" -G’ -G -G’ -G’ -G
%0 1-2326 1-0000 (0:0506) 0-126) (0-348) (0-499) (1177)
104 1-267 1-054 0-0609 0-1232 0-3569 0-5056 1-166
8100 1271 1-060 0-0617 0-1240 0-3578 0-5066 1-168
6400 1-276 1068 0-0626 0-1249 0-3589 0-5079 1170
4900 1:276 1-070 0-0638 01261 0-3598 0-5087 1-172
3600 1-283 1-083 00653 0-1274 0-3616 0-5108 1174
2500 1-286 1-091 0-0677 0-1300 0-3636 0-5128 1176
1600 1-300 1-114 00712 0-1334 0-3673 0-5168 1-182
900 1-322 1-154 0-0772 0-1393 0-3734 0-5236 1-193
Bound 0-003 0-005 0-0003 0-0003 0-0003 0-0003 0-001

Valugs in parentheses are from asymptotic methods. Bottom row gives estimated error bounds of
values in columns associated with programmed tolerance in satisfying outer boundary condition.
Some fluctuation in the values of F”(0) occur because the program adapted to changes in effective
boundary-layer thickness by making finite shifts in the position of the outer edge of the boundary
layer, as in [4]; such shifts occurred between Rep = 6400 and 4900 and between 3600 and 2500. The
boundary-layer thickness on the # scale falls as F(0) rises, i.e. as Re decreases.
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Fi1G. 2. Temperature gradient profiles at the front stagnation
point region of a transverse cylinder at finite Reynolds
numbers for two different Prandtl numbers.
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FiG. 3. Effect of Reynolds number on heat transfer at various

Prandt! numbers, showing the divergence of the computed

solution from the boundary-layer analysis; some experi-
mental data are also shown.
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but much less at Pr=072. As expected, for large
Reynolds numbers, solutions approach Meksyn’s
boundary-layer series expansion [10] at high Prandtl
numbers and approach Grosh and Cesss inviscid
flow solution [11] at low Prandt] numbers. It appears
from Fig. 3 that Grosh and Cess’s solution slightly
underestimates the heat transfer at smaller low-Prandtl
numbers and slightly overestimates the heat transfer
at larger low-Prandtl numbers in the liquid metal
region. .

Experimental data on local heat transfer in the ranges
of Reynolds and Prandtl numbers discussed here is
rather scarce. The interferometer data of Eckert and
Soehngen [12] straddle the line extrapolated for
Pr =072, Fig. 3. This figure illustrates that the effect
of boundary-layer curvature is to make &(log Nu)
d(log Re) < 0:5 at moderate Re, an effect shown well
in data for overall heat transfer from a cylinder in
crossflow. As noted previously {137, incorporation of
boundary-layer curvature effects can lead to approxi-
mations for the heat transfer of the type Nu=
A+ BRe''?, which have been used quite widely on an
empirical basis in the past, e.g. 12, 14].

For the front laminar region, the correlation for air
turns out to be [13]

Nup = 0-3737+037(Rep)' 2.

This approximation is within 4 per cent of the
computed value within the Reynolds number range
considered here.
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CONVECTION FORCEE PAR UN CYLINDRE
A DES NOMBRES DE REYNOLDS MODERES

Résumé —Aux nombres de Reynolds modérés on constate & cause de la courbure de la couche limits,
un écart entre la convection forcée par les cylindres circulaires dans un &coulement frontal et les
prédictions de transfert thermique 3 partir de Panalyse de couche limite. Dans la région du point d'arrét
amont, le gradient de vitesse et son taux de croissance au voisinage de la surface croit lorsque Re
diminue. Aux grands nombres de Prandtile changement de transfert thermique est associé a Paccroissement
du gradient pariétal de vitesse et il est supérieur & ce qui peut étre rapporté a la courbure de la couche

limite thermique. Pour Pr de P'ordte de 0,1,

les effets de la courbure de la couche limite thermique

excedent ceux du gradient pariétal de vitesse.

ERZWUNGENE KONVEKTION AM ZYLINDER BEI KLEINEREN
REYNOLDS-ZAHLEN

Zusammenfassung— Erzwungene Konvektion an Zylindern mit kreisformigem Querschnitt im Kreuzstrom
bei kleineren Reynolds-Zahlen zeigt wegen der Grenzschichtkriimmung Abweichungen in der
Stromungsform und der Wirmeiibertragung von den nach der Grenzschichttheorie bestimmten Werten.
Im vorderen Stdubereich wiichst der Geschwindigkeitsgradient und seine Anderung in Oberflichennihe
in dem MaBe an, in dem Re fillt. Bei hohen Prandtl-Zahlen ist die Anderung der Wirmeiibertragung
mit dem Anwachsen des Geschwindigkeitsgradienten an der Wand gleichldufig und gréBer als durch
die Kriimmung der thermischen Grenzschicht erwartet.

Bei Pr<0,1 iibertreffen die Auswirkungen der Kriimmung der thermischen Grenzschicht die

Wirkung der Anderung im Geschwindigkeitsgradienten an der Wand.

BbIHYMXAEHHASA KOHBEKLMA OKOJAO LHWIMHAPA TP YMEPEHHBIX
YUCTIAX PEAHOJIBACA

Anvoramus — TIpy BoiHyXACHHOR KOHBEKUMW OXONO KPYIJIbiX WHIHHADPOB B IIONEPEYHOM HOTOKE
ana ymepenHpix uwicen PeliHonsaca BcAeACTBHE KDHBM3HB! NOrpaHHysoro cios xaGmionaercs
OT/IMYME B IEPCHOCC MMOY/bCA ¥ TEMIA OT JAHHDBIX, IOAYYCHHBIX B NPHOOKEHUM DOTPAHHYHOTO
cnos. B nepenxell 30HE TOPMOXKEHHA TPAafMEHT CKODOCTH ¥ BTOPaf IPOH3BOAHAA BOAH3M HOBEPX-
HOCTH BO3PACTAlOT (O Mepe ymeHbienus Re. flpu Gonsiunx wucnax [pavaras M3mMeHeHue tenio-
[IepeHoca CBA3aHO ¢ YBENMYEHHEM TpafMeHTa CKOPOCTH Ha CTeHKEe, M TEIIOBOH NOTOK OKa3biBALTCH
60onbLIKM, YeM MOXKHO G110 Gbl IPEATIONOKHTE C YIETOM KPHBHAHB! TENIOBOTO NOrPaHUYHOTO C/OS.
Ans 3navenuii Pr nnxe 0,1 3ddexT KPHBU3HLI TEMNOBOrO NOrPAHUYHOIO C10S NpesBbilacT 3hhexT
HIMEHEHHA FPAAMEHTA CKOPOCTH HA CTEHKE.



