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Abstract-Forced convection from circular cylinders in crossflow at moderate Reynolds numbers shows 
departures from flaw and heat transfer predicted by boundary-layer analysis because of boundary-layer 
curvature. In the forward stagnation region the velocity gradient and its rate of change in the vicinity 
of the surface increase as Re decreases. At large Prandtl numbers the change in heat transfer is associated 
with the increase in wall velocity gradient, and is greater than expected through curvature of the 
thermal boundary layer itself. For Pr below about 0.1, e&z&s of curvature of the thermal boundary 

layer exceed effects of change in wali veiocity gradient. 

NOMENCLATURE 

stream functions; 
dimensionless stream functions; 
dimena~o~eS~ temperature profiles; 

cylinder radius; 
radius at a point in the fluid surrounding 

cylinder; 
dimensionless radial coordinate; 
<-I&@; 

dimensionIe~s temperature; 
kinematic viscosity; 
azimuthal angle, measured from front stagna- 
tion point; 
stream function; 
Nusselt number based on cylinder radius R ; 
Prandti number; 
Reynolds number based on cylinder radius R. 

INTRODUCTION 

FORCED convection from circular cylinders at moderate 
Reynolds numbers exhibits considerable departures 
from the Bow and heat transfer predicted by boundary- 
layer analysis. These departures are caused predomin- 
antly by the boundary-layer curvature which is ignored 
in the asymptotic (Re -+ co) analysis, these being cast 
in rectangular curvilinear coordinates, e.g. Blasius [l] 
and Coertler 121. The departure is most pronounced 
for very small Prandtl numbers at any finite Reynolds 
number, because the thermal boundary layer becomes 
increasingly thicker than the viscous boundary layer 
(and is therefore affected by its curvature more) as the 
Prandtl number is reduced. For boundary-layer analy- 
sis of convection rottnd the forward portion of a 
cylinder, the expansion of Merk E3f is convenient to 

use, and the convergence scheme of Nachtsheim and 
Swigert [4] permits solution for any Prandtl number 
of interest through use of a digital computer. 

Some estimates of convection at moderate Reynolds 
numbers have been made, including Van Dyke’s 
second-order calculations using expansion methods 
[5]. Some of the interest in second-order effects has 
been stimulated by observations in hypersonic experi- 
ments, as reviewed by Lewis [6). However, for the 
classical problem in in~rnpr~~b~e flow, the proper 
form&&on of the problem requires solution of the 
two-dimensional Navier-Stokes and energy equations 
expressed most conveniently in cylindrical coordinates. 
These give rise to a momentum equation of higher 
order than that which comes from boundary-layer 
theory. This complicates computation of solutions 
because it requires a larger number of boundary values 
at the cylinder surface to be found. 

ANALYSIS 

The formulation of the problem for which solutions 

are given here is rather similar to that used for a study 
on the effect of boundary-layer curvature in natural 
convection over a horizontal cylinder [7]. In the present 
case there is no buoyancy term but instead a steady 
flow transverse to the cylinder and which is uniform 
infinitely upstream of the cybnder. In common with 
the natural convection problem the first pair of differ- 
ential equations derived through application of the 
Blasius-style or the Goertler-style transformations (the 
original equations here being written in cylindrical 
coordinates) turns out to be the same for both trans- 
formations; for the front stagnation region the solution 
of this first pair of equations is dominant. The choice 
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of the azimuthal series is open to other possibilities. 
Besides the series of Blasius and of Goertler, each of 
these series being designed for use in boundary layer 

problems (Re --+ E), one finds series such as that used 
for flow around a cylinder in the Reynolds number 

range O(l) by Underwood [S]. Underwood’s series 
expansion for the stream function was 

li/ = f;(r)sin$+,fz(r)sin2e5+ (1) 

an expansion which yielded equations for solution on 
a series-truncation basis. A particular advantage which 
arose at Rr = O( 1) was that the sequence of differential 

equations could be arranged in a set for each of the ,f; 
with a group of linear terms in derivatives off; making 

up the left-hand-side, the right-hand-side being a func- 

tion of all fi’s and Re. This sequence was solved 
iteratively through series truncation. In the present case 

solutions are sought in the range co > Re > 900. and 
series appropriate for boundary-layer-like problems 
seem to be a useful starting point: presumably, as Re 
is progressively reduced the (truncated) series will need 
to be taken to an increasing number of terms to 
maintain a constant precision of solution and at some 

Reynolds number a switch to an expansion such as (I) 
would provide a more efficient means of solution 

because the number of terms in the series needed would 
be smaller. Thus, by use of the Blasius-style trans- 
formations for the radial coordinate 

C = Rek2r/R, 

the stream function (an azimuthal series) 

(2) 

$ = vRe~‘2i~Fl(i)+~3F3(i). .) 

and the dimensionless temperature 

(3) 

0 = G,(i) + $‘Gs(;) + (4) 

the Navier-Stokes and energy equations reduce to sets 
of terms which are coefficients of an infinite power 

series of the azimuthal coordinate 4; each set which 
is separately a coefficient of a power of 4 can be put 
equal to zero. It is found that the set for each power 

of c$. while dominated by terms for the corresponding 
Fi, contain some terms for other F, as well. This 
implies that the process of solution is not simply a 
matter of marching through equations of ascending 
order in Fi’s, using only solutions for lower values of 
the series index (i), as can be done in the boundary- 
layer limit; instead, an iterative process appears to be 
needed because even the first equation (obtained by 
putting the coefficient of 4 equal to zero) contains 
terms in F3 as well as Fi. A continuous process of 
revising solutions for F1, F3, etc. seems to be called for. 
in principle, as higher orders of Fi are numerically 
investigated. The very first solution which can be sought 
is one for the first pair of equations (momentum and 
energy) from which terms in higher orders of Fi have 
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been deleted. Terms in the momentum equation. lili 
example, can be arranged in sub-sets each of different 
order in (l,/Re) ‘I’; the first such sub-set of order t 11. i\ 

and this is the sub-set which yields the boundary-layci- 
limit when integrated once: the subset of c>rdci 

(~/Rc)“~ is 

this sub-set represents the first-order correction tin 
finite Re effects and does not contain F3 in any form: 
the sub-set of order (l/Re) is 

This sub-set is the second-order corrcctton for fimtc 
Re effects and does contain terms involving F3. By 
deleting terms in F3, it is to this order that solution 
of the equation truncated of terms in F3 will bc 
approximate. It is possible to estimate the magnitudes 
of terms here because at large Rr, F, and F3 will still 

be fairly close to values determined from the Blasius 
series solutions [9]. From this it seems that the terms 
in F;F3 and FIF; will nearly mutually cancel, and that 
omission of the term in F$ has the greatest effect in 
making the solution of the momentum equation ap- 

proximate. The situation with the energy equation is 
simpler; no terms in G2 etc. appear in the energy 
equation for (d)“, but the Fi used in that equation ia 
of course an approximation in the sense discussed in 

detail above. Understanding that the solution oi 
equations from which terms in F3 etc. have been 
deleted is the zeroth iterate at finite Rr in a scriex 
truncation, the truncated equations foi- F, and C;,, c:~n 
be written (dropping the subscripts) as 

pv + (2/[)F”’ -(l/<‘)F” + (1/c3)F’ 
_ (Re’l”/~‘)(F’)” (Re’/2/[)F’F” .- (Re’,‘!;“)Ff” 

+ (Re”‘/<‘)FF”+ (Re’,’ <)FF”’ = 0 C5) 

G”+(l/<)G’+(Re~‘2/[)PrFG’ = 0 16) 

with the boundary conditions, after corresponding 
transformations, being written 

F = 0, F’ = 0, G = 1 at r -= R i.e. < = Rek” (71 

F’-+I,F”-+O,G+O as r + 1 i.e. < - 7 

These equations reduce to those for a boundary layer 
as ReR + CC if the transformation 11 = l -R&’ is used. 
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In the process of solution, the three boundary values 
F”, F”’ and G’ at I = R, i.e. c = Re$‘, must be found. 
This can be accomplished by iteration seeking values 

for F” and F”’ at < = Rek” which simultaneously make 
F’-+ 1 and F”-+ 0 at sufficiently large value of < in 
momentum equation. After the momentum equation 
has been solved for a particular Reynolds number, the 

energy equation can be solved for a particular Prandtl 
number by seeking G’ at [ = Reii2 to satisfy the 
asymptotic condition, G + 0 as [ + co. Integration of 

equations (4) and (5) was carried out by fourth-order 
Runge-Kutta and Adams-Moulton programs and the 
Nachtsheim and Swigert convergence scheme was used. 

The results of the calculations quantify the expected 

trends, Table 1. The effect of finite boundary-layer 
curvature on structure in the viscous boundary layer 
is to increase the velocity gradient (F”) and its rate of 
change (F”‘) in the vicinity of the wall, compared with 
the boundary-layer asymptotic values, as Re is de- 
creased. At large Prandtl numbers the thermal bound- 

ary layer is small compared with the viscous boundary 
layer, and its quantitative structure is dominantly 
determined by the velocity gradient at the wall; thus 

the effect of finite Reynolds numbers is felt dominantly 
through the shift in F”. The effect is greater than would 
be accountable through curvature of the thermal 
boundary layer by itself. For the asymptotic boundary- 

layer case, values are indicated by the dashed line. At 
very small Prandtl numbers the thermal, boundary 
layer is larger than the viscous boundary layer, and 
the effects of curvature of the thermal boundary layer 
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FIG. 1. Effect of finite Reynolds numbers on heat transfer 
at the forward stagnation point of a cylinder over a range 
of Prandtl numbers; the boundary-layer limit solutions are 

shown as a dashed line. 

itself exceeds the effect of the shift in F”. These two 

cases can be seen in Fig. 1 where NuR/RejjZPr”3 is 

plotted as a function of Pr. The numerical effects of 
the two Prandtl number extremes can be seen; what 

is not obvious before numerical evaluation is the order 

of magnitude of Prandtl number which divides the two 
extremes. From Fig. 1, this is about Pr = 0.1. The 

distinction between the two extremes can be seen in 

temperature gradient profiles from Prandtl numbers 

typical of the ranges, Fig. 2; at Pr = 0.005 there is a 

large change in G’(0) from Re = 10000 to Re = 900, 

an effect of thermal boundary-layer curvature itself, 

Table 1. Boundary values at r = R 

Pr= 0405 0.025 0.3 0.72 7.0 

ReR F” _ F”’ -G’ - G’ -G’ -G’ -G’ 

I?4 
1.2326 1~OOQO (0.0506) (0,126) (0.348) 
1.267 

(0,499) 
1.054 

(1,177) 
0.0609 0.1232 0.3569 0.5056 1.166 

8100 1.271 1.060 0.0617 0.1240 03578 0.5066 1.168 
6400 1.276 1.068 0.0626 0.1249 0.3589 0.5079 1,170 
4900 1,276 1.070 00638 0.1261 0.3598 0.5087 1.172 
3600 1.283 1,083 0.0653 0.1274 0.3616 0.5108 1,174 
2500 1.286 1.091 0.0677 0.1300 0.3636 0.5128 1,176 
1600 1.300 1.114 0.0712 0.1334 03673 0.5168 1.182 
900 I.322 1.154 0.0772 0.1393 0.3734 0.5236 

Bound 
1,193 

0.003 0.005 oCQo3 0.0003 o%nIo3 oQOo3 ON)1 

Values in parentheses are from asymptotic methods. Bottom row gives estimated error bounds of 
values in columns associated with programmed tolerance in satisfying outer boundary condition. 
Some fluctuation in the values of F”(0) occur because the program adapted to changes in effective 
boundary-layer thickness by making finite shifts in the position of the outer edge of the boundary 
layer, as in [4]; such shifts occurred between Re, = 6400 and 4900 and between 3600 and 2500. The 
boundary-layer thickness on the n scale falls as F’(0) rises, i.e. as Re decreases. 
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FIG. 2. Temperaturegradient profilesat the front stagnation 
point region of a transverse cylinder at finite Reynolds 

numbers for two different Prandtl numbers. 

Frc. 3. Effect of Reynolds number on heat transfer at various 
Prandtl numbers, showing the divergence of the computed 
solution from the boundary-layer analysis; some experi- 

mental data are also shown. 

but much less at Pr = @72. As expected, for large 
Reynolds numbers, solutions approach Meksyn’s 

boundary-layer series expansion [lo] at high Prandtl 
numbers and approach Grosh and Cess’s inviscid 

flow solution [If] at low Prandtl numbers. It appears 
from Fig. 3 that Grosh and Cess’s solution slightly 
underestimates the heat transfer at smaller low-Prandtl 
numbers and slightly overestimates the heat transfer 
at larger low-Prandtl numbers in the liquid metal 
region. 

Experimental data on locul heat transfer in the ranges 

of Reynolds and Prandtl numbers discussed here is 
rather scarce. The interferometer data of Eckert and 

Soehngen [12] straddle the line extrapolated for 
Pr = 0.72, Fig. 3. This figure illustrates that the e&t 
of boundary-layer curvature is to make ?(log_Vn) 

?(logRe) < 0.5 at moderate Re, an effect shown sell 

in data for overall heat transfer from a cylinder in 
crossflow. As noted previously [13]. incorporation of 

boundary-layer curvature effects can lead to approxi- 
mations for the heat transfer of the type Nrr =T 
A+BRe’ ‘, which have been used quite widely on an 
empirical basis in the past, e.g. [12, 141. 

For the front laminar region, the correlation for an 
turns out to be [ 131 

Nllr, = 0.3737+0.37(Rc~n)‘,“. 

This approximation is within 4 per cent of the 
computed value within the Reynolds number range 

considered here. 
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CONVECTION FORCEE PAR UN CYLINDRE 
A DES NOMBRES DE REYNOLDS MODERES 

Rbum&Aux nombres de Reynolds mod&s on constate B cause de la coutbure de la couche iimite, 
un &cart entre la convectian for&e par ies cyiindres circulaires dans un bcoulement frontat et ies 
p&dictions de transfert thermique & pa&r de l’analyse de couche iimite. Dans la rkgion du point d’arrb 
amont, le gradient de vitesse et son taux de croissance au voisinage de la surface croit lorsque Re 
diminue. Aux grands nombres de Prandtl le changement de transfert thermique est associC g I’accroissement 
du gradient pa&al de vitesse et il est suptrieur B ce qui peut Etre rapport& B la courbure de la couche 
limite thermique. Pour Pr de I’ordik de O,l, les effets de la courbure de la couche limite thermique 

cxcedent ceux du gradient pariCta1 de vi&se. 

ERZWWNGENE KONVEKTION AM ZYLINDER BEI KLEINEREN 
REYNGLDS-ZAHLEN 

Z~mrn~~~~g-Er~wungene Konvektion an ZyCndern mit kreisfsrmigem Querschnitt im Kreuzstrom 
bei kieineren Re~olds”~~ien zeigt wegen der Gr~~c~ichtkr~ung Ahwe~~h~g~ in der 
Str~mungsform und der W~~e~bertrag~g von den nach der Grenzsch~chttheo~e bestimmten Werten. 
fm vorderen Staubereich wbhst der G~chw~n~gk~tsgrad~e~t und seine .&nderung in Ubefigchenntie 
in dem MaBe an, in dem Re f&lit. Bei hohen Prandtl-ZahIen ist die &derung der Wtimeiibertragung 
mit dem Anwachsen des Geschwindigkeitsgradienten an der Wand gleichlgufig und gr813er als durch 
die Kriimmung der therm&hen Grenzschicht erwartet. 

Bei Pr 6 0,l iibertreffen die Auswirkungen der Kriimmung der thermischen Grenzschicht die 
Wirkung der ;inderung im Geschwindigkeitsgraditmten an der Wand. 

3blH~~~~~HA~ KOHBEKL&lR OKOflO 4~~~H~PA IlPM YMEPEHHbfX 
YMCDAX fEiiHO_Jibj$ZA 

Asntom~~-I-lpn BbiHy~~eHHO~ KOHBeXQPH OKOIiO KpyrJ?blx UHilHHtn~OB B ES0Re~YH0M EIOTOKe 

NI%l yMe~liHblX wcen PeSiwnbnca BCiiencTBWe KpRBH3trbl ff0r~a~~Y~0~0 CsTOS H86Jllo&ieTCS 
o~n#Yue B iiepe~oce nbxnynbca n renna 0~ nawibzx, nonyrenabix 43 ~p~6~~~e~~~ ~orpa~uY~o~0 
cnolf. f( nepenneEi 3oHe TopMO~eHLin rpzv@ien7 CK0pOCTM II srapaa IIpOKisBO~HaSi B6JlH3YI nosepx- 
HOCTH BO3paCTWOT IlO Me@? yMeHbil.ieHHR &. npW 6onbwMx YMCJGiX npaHnTJIS% I13MeHeHMe TeIUIO- 
nepeHoca can3ano c yaenMYetiMeM rpanseHTa CKOP~CTM iia cTeHKe,M Tennoeofi ~OTOK oKa3blBaeTcR 
~O~~~~M,Y~~MO~HO~~~~O~~~~~~A~O~O)K~~T~C~Y~TOMK~~~H~H~~T~~~OBO~O~O~~~H~YHO~OC~OE~. 
,&lR 3HaYeHHh fV HMxe a,[ 344eK.T KpHBM3HbI TetUIOBOT0 ilO~~WiW4HOl-0 CJIOSI IlpeBblLUaeT +$eKT 

H3iveHetiw rpanweHTa CKO~OCTH HacrenKe. 


